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SUMMARY 

 When things go wrong, it is a human instinct to attribute 
blame. 

 Today, many people are routinely blamed for this economic 
crisis – investment bankers, for greed; central bankers, for 
being “behind the curve”; regulators, for being “asleep at the 
wheel”; credit rating agencies, for too many Triple A ratings; 
even the public themselves, for foolishly borrowing too much. 

 What made all these people reckless at the same time? 

 The record seems to show that they were all just victims. 
Their mistake was to believe what they were told. They were 
lulled into a false sense of security by an idea – that if policy 
makers could maintain low inflation (and more important, low 
inflation expectations), then all good things would follow – 
growth, employment, prosperity, stability. 

 Unfortunately, the idea turned out to be a myth – the largest 
policy failure of our generation. 



 

 

 The Myth of Inflation Targeting created the illusion of the new 
Jerusalem, the new paradigm – the end of the economic 
cycle.  

 But lack of clarity about the distinction between the 
necessity and sufficiency of inflation targets has been 
responsible for a misunderstanding of epic proportions. 

 By first creating the false impression that low inflation meant 
financial stability, and then measuring the wrong kind of 
inflation, the inflation targeting policy encouraged the view 
that it was safe to borrow, safe to invest. 

 The Myth led bankers to lend more, traders to risk more, 
homeowners to borrow more, regulators to relax more, and 
politicians to boast more – about the end of boom and bust. 

 When the Myth collapsed, it took all of us down with it –
academics and auditors, bankers and bakers, economists 
and electricians. We all went into the dark. 

 So this pamphlet has a definite purpose: 

Never again 
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1. INTRODUCTION 

The first chapter of this pamphlet deals with the error in the 
Bank of England’s remit of obliging the Bank to focus only on 
inflation. 

The second chapter addresses how that error was 
compounded by obliging the Bank to focus only on one kind of 
inflation – as it happens, the wrong kind. 

And the third chapter deals with the consequences – how 
everyone was duped by this policy failure into an inappropriate 
sense of self-confidence, including bankers and their auditors. 
This chapter seeks to impose a duty on auditors to investigate 
and report on Banks’ exposure to “insured” liabilities held “off-
balance sheet”. 

These proposals will not abolish the economic cycle, as was 
claimed by the Myth of Inflation Targeting. But, taken together, if 
these changes were enacted in UK law, Britain would never 
again have an economic crisis caused by a banking crisis 
caused by debts that went unseen by auditors, regulators and 
central banks.  
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This pamphlet does not seek to apportion blame for the crisis. 
Failure of free markets. Failure of regulation. Failure of the FSA. 
Or the Bank of England. Or the Treasury. Or the whole tripartite 
system. Failure of the UK. Or failure of the US. Or of the whole 
world. The pamphlet is neutral on all counts. 

It has only one modest aim. To help whichever party is in 
Government to be wary of the idea that an economic disaster 
can not occur during a period of low inflation. 
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2. TARGETING ONLY INFLATION 

Shakespeare taught us that human beings can have a fatal flaw. 
So too can legislation. 

The Bank of England Act 1998 has a fatal flaw: it has three words 
too many.  

All of us know the importance of language. Parliamentarians are 
often mocked for endlessly debating tiny amendments to 
legislation, such as: 

“Delete ‘a’. Insert ‘the’ ” 

But in this case, three words changed history.  

These days, Bank of England officials are routinely condemned 
for allowing British citizens to suffer the longest and sharpest 
recession of all major economies. 

But, in fact, the top officials of the Bank of England were like top 
generals given the wrong orders. The fault lies not with them, 
but with the legislation that created them. The Myth of Inflation 
Targeting left our Central Bank with no function other than to 
deliver low inflation expectations.  
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This pamphlet is based on the unremarkable proposition that 
officials of the Bank of England have sufficient wisdom and 
breadth of vision to see the whole economic picture. 

They should not be forced to wear legislative blinkers which 
blind them to how an economic disaster can arise during a 
period of low inflation. 

The Bank of England Act 1998 was the iconic Act of Parliament 
which gave the Bank of England its independence. Clause 11 in 
Part 2 of the Act defined the role of the Bank. It reads:  

“In relation to monetary policy, the objectives of the 
Bank of England shall be –  

a)  to maintain price stability, and  

b)  subject to that, to support the economic 
policy of Her Majesty’s Government, including 
its objectives for growth and employment.” 

The Bank of England was ordered to concentrate on inflation 
above all else, so that when the crunch came its top officials 
were looking the other way.  

During the passage of the Act in the House of Lords, there was 
much discussion about those three words, “subject to that”. 

Why not, “having regard to”? Or, “taking account of”? Why were 
all other considerations to be subordinate to controlling 
inflation? 

The economic orthodoxy which underpinned the Act was based 
on the seminal work of Professors Paish and Phillips at the 
London School of Economics.  
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The ‘Phillips Curve’ showed that high inflation was incompatible 
with high employment and high growth.  

The mechanism of the causal relationship between them was 
‘Wage Push’. According to the theory, noting higher prices, 
unions would press for higher wages, and employers would lay 
off workers to compensate. This was the dreaded wage/price 
spiral of the 1970s. Policy makers concluded, and legislators 
concurred, that inflation must be curbed at all costs. 

The winning argument at the time of the Act was that the 
relegation of the Government’s growth and employment 
objectives would prevent the manipulation of economic activity 
by unscrupulous politicians in search of votes. And control of 
inflation was, in any case, the best guarantor of growth and 
employment. 

The British psyche had been scarred by the “Stop/Go” cycle of 
the 1970’s. A boom. Followed by inflation. Followed by severe 
measures to control inflation. A bust. 

The lesson seemed obvious – if the monster of inflation could 
be tamed that would be the end of the economic cycle as we 
know it. 

On 12 November 2008, in reply to a question in the House of 
Lords about the remit of the Bank of England by former Chief 
Secretary of the Treasury, Lord Barnett, the UK Government was 
still clinging to the wreckage of that theory. 

Lord Myners spoke for the Government. He said it was quite 
satisfied with the remit of the Bank of England. It was 
impeccable. In fact, it was so perfect that it had been 
responsible for the fine performance of the economy under his 
Government. He said flat out that: 
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“The remit should not be amended in any way.” 
[Official Report, 12/11/08; col.655] 

And he gave his reasons. The remit had delivered “unparalleled 
economic growth and low inflation.” 

He explained how it had achieved this. He said that stable 
prices and economic growth are “not in conflict; one is a pre-
condition of the other.” 

And he went on to say that low inflation was: 

“an essential precondition of growth and prosperity.” 

In other words, in November 2008, the UK Government still 
thought that low inflation would deliver economic growth, and 
financial stability. 

Unfortunately, as we all know, it has not worked quite like that.  

A month later, the UK Government had changed its mind. It had 
found a flaw in the Bank of England’s remit. On 4 December, it 
published the Banking Bill 2008 to amend it. 

Section 2 A (1) of Clause 228 of the Government’s Banking Bill 
would give the Bank of England a second new objective: 

“to contribute to protecting and enhancing the 
financial stability of the United Kingdom” 

So in this little noticed revolution in economic management, the 
tectonic plates of the Bank of England were shifted from the 
sufficiency of a single remit to the necessity for a dual mandate. 

What could have led the UK Government to such a change of 
mind about the remit of the Bank of England? 
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The Government belatedly agreed that while low inflation may 
be a necessary condition for financial stability, it is certainly not 
a sufficient condition. 

That fine theory, to which the Government was still advocating 
November 2008, had already met its Waterloo in October 2008, 
when we discovered, according to the Deputy Governor of the 
Bank of England, that, 

“the largest financial crisis in human history” 

had arisen during a period of low inflation. 

By focusing only on inflation, as three words in Clause II of the 
Bank of England Act 1998 directed it to do, the Bank of England 
was blindfolded to the disaster for economic growth and 
financial stability that could occur in a low inflation environment. 

Never again 

. 
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3. TARGETING THE WRONG  
KIND OF INFLATION 

The previous chapter explains the error in the Bank of England’s 
remit of making the Bank focus on inflation above all else. This 
chapter deals with how that error was compounded by obliging 
the Bank to focus only on one kind of inflation – the wrong kind. 

At the time of the Bank of England Act, the Retail Price Index 
inflation target (RPI) included housing payments. However, in 
2002 the CPI (Consumer Price Index) was introduced, which 
excluded housing costs. Whereas the Bank’s CPI keeps a close 
eye on inflation in the price of a packet of peas and a bar of 
chocolate, it overlooks the very aspects of inflation that caused 
this crisis – all the debt, housing, mortgage ingredients of our 
present misfortune. 

While asset prices rose and fell by 50%, the Bank of England 
was directed by the Act of Parliament which created it to look 
the other way – to painstakingly examine a rate of inflation 
which barely moved at all. 

But while ‘inflation’ stayed between a narrow range, other rates 
of inflation changed dramatically. 
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INFLATION OF DEBT OWED BY THE AVERAGE 
UNITED KINGDOM HOUSEHOLD 

Year Total financial liabilities of
households and non-profit 

institutions serving 
households 

Total number 
of households 

Average 
Household’s 

Financial 
Liabilities 

 (£ millions) (millions) (£000s) 

1996 550,108 23.68 23,231 

1997 586,659 23.8 24,650 

1998 625,134 23.98 26,069 

1999 675,599 24.08 28,056 

2000 734,790 24.28 30,263 

2001 810,665 24.43 33,183 

2002 923,144 24.62 37,496 

2003 1,046,913 24.68 42,419 

2004 1,172,032 24.74 47,374 

2005 1,249,393 24.83 50,318 

2006 1,405,756 24.88 56,501 

Source: www.statistics.gov.uk/statbase/product.asp?vlnk=1904 

For the last five years, ‘debt inflation’ was on average 11.25% a 
year, nearly five times the Bank of England CPI inflation target. 
But where is ‘debt inflation’ in the CPI?  

Not included. 
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INFLATION OF ASSET VALUE: AVERAGE HOUSE PRICES 

 

Source: http://www.communities.gov.uk/housing/housingresearch/ 

housing statistics/housingstatisticsby/housingmarket/livetables 

During the same period, the inflation rate of one particular asset 
class, property, was 13% p.a., five times the Bank CPI target.  

Where is that in the CPI? Not included. 

What about the cost of acquiring and holding these property 
assets; i.e. mortgage interest? Not included. 
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CPI INFLATION AS MEASURED BY THE BANK OF ENGLAND  

 

Source: http://www.statistics.gov.uk/statbase/product.asp?vlnk=868 

CPI inflation barely moved. It was irrelevant. It neither registered 
the huge increase in asset price inflation, nor the huge collapse 
in asset price inflation. 

The Bank’s measure of inflation was stuck in the past. The 
Bank’s CPI measure of ‘inflation’ is out of touch because the 
world has changed. Millions of people had become investors in 
a booming new asset class. They were home owners. We are 
used to lamenting the scarcity of private investors in the stock 
market. But people did not stop investing. They just found 
something better to invest in – property. 

“I borrow money. 

I buy an asset. 

The price goes up. 
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I exit the asset. 

I repay the loan. 

I keep the profit.” 

This was the joy of debt, as also understood by the masters of 
private equity. 

The great British public had been given specific assurances 
that: 

“Central Banks had secured low inflation. 

Central Banks had managed low inflation 
expectations. 

Central Banks had achieved predictably low 
inflation. 

Central Banks had said that meant prosperity and 
stability.” 

There was nothing to worry about. 

But the great ones did not consider how a change in the 
inflation rate of a certain asset class could bring about a 
dramatic collapse in the economy, notwithstanding “low 
inflation”. As the Chairman of the US Federal Reserve, Ben 
Bernanke, put it, there is no one correct method for valuing an 
asset class. There are two methods. First, the price a normal 
seller would receive from a normal buyer who considers the 
value of the asset at maturity. And second, the price a 
distressed seller would accept now from a reluctant risk-averse 
buyer. That change in valuation methodology, unforeseen in the 
Bank’s definition of inflation, created this crisis. 
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This has been confirmed by the IMF: 

“By focusing on consumer prices, Central Banks 
ignored risks associated with high asset prices and 
increased leverage.” 

International Monetary Fund, 12 March 2009 

By focusing on the wrong kind of inflation, as the Act directed it 
to do, the Bank of England was blindfolded to the disaster that 
could occur in a low inflation environment. 

Never again. 

. 
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4. CONSEQUENCES 

The Myth of Inflation Targeting was the direct cause of 
excessive self-confidence which was itself the cause of our 
present predicament. This chapter describes precisely how that 
worked through the international banking system.  

In three stunning creative leaps, huge liabilities were contained 
off balance sheet in the accounts of our giant global banks. This 
is why, when the crisis arose, it was all such a shock, and is still 
unravelling. This is why the banks had so many bad debts that 
they came to the point of collapse. 

Leap No. 1: The War of the Acronym 
While everyone was looking the other way, reassured by the 
Myth of Inflation Targeting, this economic war was started by an 
acronym. Here is a sentence: 

“I use CFDs in my SIV to buy CDIs in the CDS.” 

After a long search, it has proved impossible to find any 
Chairman, Chief Executive, Non-Executive Director, Shareholder 
or Owner of any Bank, or any Regulator or Central Banker, who 
can translate that sentence into plain English. 
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They know these acronyms exist. They know what the letters 
stand for. But they cannot explain what they mean. 

The distinguished former Governor of the Bank of England, Eddie 
George, confirmed the point. Writing about these banking 
acronyms, he says that while he was Governor he did not 
understand:  

“how they were rated or related.” 

These are the acronyms that brought the world to its knees.  

For centuries, it was thought that banks should not lend more 
than they had on deposit. Then it was decided that was unrea-
sonable – too restrictive on banks. Bankers ought to be able to 
lend a multiple of what they had on deposit, because not all 
their depositors would ever ask for their money at once.  

So it was agreed that banks could lend a multiple of their 
deposits, up to a reasonable ratio. After 1974, that ratio would be 
determined by a body of good men and true known as The 
Basel Committee on Global Financial Stability. 

This Basel Committee was to be a high-powered Committee of 
central banks, regulators and bankers. Unfortunately, it would 
have no authority and no power. It would not lay down “rules”. It 
would not pass “laws”. It describes itself today as a “forum”. It 
makes what it calls “recommendations”. It duly made 
recommendations about what the capital adequacy ratios of 
banks should be – in other words, what their multiple of 
deposits should be. It did that in its Basel II Accords in 2004. 

These accords represented a roadblock for banks, and 
stimulated the first example of bankers’ remarkable creativity. 
They would get around the restrictions of the Basel Committee 
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by creating what are called Structured Investment Vehicles 
(SIVs). For some reason, never adequately explained by any 
bank auditor, these could be contained “off balance sheet”. In 
one leap, bank “loans” became “investments”, and were no 
longer counted as part of a bank’s “Loan Book”. This 
transformed a Bank’s capital ratio and enabled the bank to do 
exactly what was intended – to lend more. 

Leap No. 2: “We are all Triple A now” 
As banks began to lend more, they began to lend to people 
lower and lower down the asset scale. There is a popular 
misconception that these loans were to the so-called “sub-
prime” market. There is no such place. Bankers are not so dim. 
There is “prime” (at the top), and the rest – a continuum of 
assets from top to bottom of the market.  

In time, these extra levels of lending brought the banks to a 
second roadblock – the credit rating agencies. 

Apparently, it is not possible for many large institutions to buy or 
invest in anything other than what are called “Triple-A” rated 
securities. Sometimes they do not want to; sometimes they are 
not allowed to. Either way, as bankers lent more, they reached 
the point where they had to overcome a second problem – the 
credit rating agencies were growing anxious about giving Triple 
A ratings to some of the banks so-called “investments”. 

The bankers soon found a creative way around that obstacle. 
They created a new industry. They approached insurance 
companies which, until then, had typically insured cars, houses 
and lives and so on, and made them an offer they could not 
refuse – a new profit centre, in which they could sell insurance 
policies for “securities” i.e. debts. The insurance companies 
willingly obliged. The banks were then able to go back to the 
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rating agencies and say, “There you are. These debts now 
deserve Triple A ratings. Why? Because they are insured”.  

The rest is history. 

Leap No. 3: Computer shall speak unto computer 
In 2000, while working at JPMorgan Chase, David Li published a 
paper in The Journal of Fixed Income titled “On Default 
Correlation: A Copula Function Approach.” (This is reprinted in 
Appendix 1). 

The Gaussian Copula Function was a statistical method of 
correlating the behaviour of two or more variables, such as the 
likelihood of default on a debt. It provided a simple correlation 
number to rank multi-variable risk. This made it possible for 
computers to package different tranches of bonds with different 
credit ratings to suit different investors. 

The computer model would give investors the product they 
wanted, custom-built. If you preferred low-yield, low-risk, long-
maturity, you could have that. If you liked high-yield, higher-risk, 
short-maturity, it was all available – tailor-made, to your 
personal preference. For some time, regulators thought this was 
a benefit – it “spread the risk”. 

The Collateralized Debt Instrument (CDI) market grew from $275 
billion in 2000 to $4.7 trillion by 2006. In 2001, there was $920 
billion in Credit Default Swaps (CDS) outstanding. By the end of 
2007, that number was more than $62 trillion.  

Of course, the Copula-powered computer model was sensitive 
to the risk of falling house prices – but nobody was interested. 
Everyone was convinced by the Myth of Inflation Targeting – 
certain that low inflation meant long-term growth and financial 
stability.  
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People ask why “traditional bank managers” did not apply 
“basic common sense”. The answer is that human beings were 
not involved. The Copula Function model enabled computers to 
execute billions of dollars of trades with other computers. The 
counterparty was another computer. A bank’s computers both 
sold the packages to other banks, and bought them from other 
banks. Computers were on both sides of the transaction. 

The world was heading for the first truly technological crisis. But 
nobody knew it – not the Treasury, not the FSA, not the Bank of 
England, not the US Federal Reserve, not the US Treasury 
Secretary, not the Chancellor of the Exchequer, not even the 
Prime Minister or the US President. They were all victims of the 
Myth of Inflation Targeting, certain that low inflation meant 
growth and stability. 
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5. CONCLUSION 

The UK Government’s response to this pamphlet will be to echo 
the words of Ben Bernanke, Chairman of the US Federal 
Reserve, speaking at the London School of Economics in 
February 2009. He said there is a need for: 

“increased surveillance and more oversight of 
capital regulations and accounting rules.” 

He said these are needed on a global basis: 

“to detect and manage risk.” 

The British Government has said that the International 
Accounting Standards Board has recently been charged by the 
Financial Stability Forum and the G20 leaders to review its 
relevant standards and as a result is proposing new 
consolidation rules. It has said that, in addition, the Committee 
of Central European Bankers (CEBS) and the Financial Services 
Authority (FSA) are seeking greater disclosures on the impact of 
the financial crisis and the British Bankers Association (BBA) has 
supported this by offering their own recommendations. It 
concluded that this is an area therefore that needs to be taken 
on an international basis rather than the UK alone and by 
reassuring us that good work is already underway. 
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We are all touched by romantic faith in the wisdom of bodies 
such as the IASB, the FSF, the BBA, the CEBS, the FSA, etc. 

However, the OECD said: 

“Basel II... fostered the creation of off-balance sheet 
vehicles.” 

These liabilities remain. Citigroup still has $1.2 trillion in off-
balance sheet special purposes entities. To underline the point, 
consider what was said by a senior Government source in 
March 2009 about the liabilities of the banks: 

“In short, we do not know what they are worth. All 
the assets on the balance sheet have got to be 
valued to the best of our ability. Auditors have been 
brought in to work this out.” 

If that statement applied to the grocery shop in your local high 
street it would be sad, but understandable. When it applies to 
the biggest banks in the world, it is astonishing. No wonder the 
former head of the US Federal Reserve, Alan Greenspan, looked 
on as all these events unfolded with what he called: 

“shocked disbelief.” 

A request that banks routinely make to their customers: 

“Please show me your balance sheet” 

was one with which the banks themselves could not promptly 
comply.  

The best form of regulation of the banking sector is full 
disclosure. It should be a statutory requirement for banks’ 
auditors to provide explanation and commentary on contingent 
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liabilities contained in banks’ invisible off-balance sheet 
investments. The Treasury should make provision by regulations 
requiring a bank’s auditor to include a description in the notes 
to the bank’s annual accounts of any significant sums which 
could become a liability for the bank, and of the circumstances 
in which they could become a liability. 

The regulations should specify that the description should 
include sums invested in Structured Investment Vehicles and 
sums for which the bank has achieved insurance. 

All these measures are worthy and will help, but they are not 
enough. This pamphlet reveals that the true culprit is not a 
regulation or an accounting standard; not a person or an 
institution or an industry, but an idea – the Myth of Inflation 
Targeting. It blinded us to how an economic catastrophe could 
occur during a period of low inflation. It lulled us into a false 
sense of security. Its confusion between the necessity and 
sufficiency of inflation targets led to a misunderstanding of epic 
proportions. When the myth was exposed, it took us all down 
with it.  

As readers now know, none of us can rely on “Inflation 
Targeting” for our safety and security. It has been the largest 
public policy failure of our generation. It is not the guarantor of 
growth and stability, and never was. Why? Because it is a Myth.  

Never again 

. 
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APPENDIX A 

The following article by David Li was first published in the US 
Journal of Fixed Income in April 2000. 

This article is reprinted with permission from Institutional Investor, 
Inc. To view the original article, please go to www.iijfi.com 

 



On Default Correlation: A Copula Function Approach

David X. Li
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Abstract

This paper studies the problem of default correlation. We first introduce a random variable called “time-
until-default” to denote the survival time of each defaultable entity or financial instrument, and define the
default correlation between two credit risks as the correlation coefficient between their survival times.
Then we argue why a copula function approach should be used to specify the joint distribution of survival
times after marginal distributions of survival times are derived from market information, such as risky
bond prices or asset swap spreads. The definition and some basic properties of copula functions are
given. We show that the current CreditMetrics approach to default correlation through asset correlation
is equivalent to using a normal copula function. Finally, we give some numerical examples to illustrate
the use of copula functions in the valuation of some credit derivatives, such as credit default swaps and
first-to-default contracts.



1 Introduction

The rapidly growing credit derivative market has created a new set of financial instruments which can be

used to manage the most important dimension of financial risk - credit risk. In addition to the standard

credit derivative products, such as credit default swaps and total return swaps based upon a single underlying

credit risk, many new products are now associated with a portfolio of credit risks. A typical example is the

product with payment contingent upon the time and identity of the first or second-to-default in a given credit

risk portfolio. Variations include instruments with payment contingent upon the cumulative loss before a

given time in the future. The equity tranche of a collateralized bond obligation (CBO) or a collateralized

loan obligation (CLO) is yet another variation, where the holder of the equity tranche incurs the first loss.

Deductible and stop-loss in insurance products could also be incorporated into the basket credit derivatives

structure. As more financial firms try to manage their credit risk at the portfolio level and the CBO/CLO

market continues to expand, the demand for basket credit derivative products will most likely continue to

grow.

Central to the valuation of the credit derivatives written on a credit portfolio is the problem of default

correlation. The problem of default correlation even arises in the valuation of a simple credit default swap

with one underlying reference asset if we do not assume the independence of default between the reference

asset and the default swap seller. Surprising though it may seem, the default correlation has not been well

defined and understood in finance. Existing literature tends to define default correlation based on discrete

events which dichotomize according to survival or nonsurvival at a critical period such as one year. For

example, if we denote

qA = Pr[EA], qB = Pr[EB], qAB = Pr[EAEB]

where EA, EB are defined as the default events of two securities A and B over 1 year. Then the default

correlation ρ between two default events EA and EB , based on the standard definition of correlation of two

random variables, are defined as follows

1



ρ = qAB − qA · qB√
qA(1 − qA)qB(1 − qB) . (1)

This discrete event approach has been taken by Lucas [1995]. Hereafter we simply call this definition of

default correlation the discrete default correlation.

However the choice of a specific period like one year is more or less arbitrary. It may correspond with many

empirical studies of default rate over one year period. But the dependence of default correlation on a specific

time interval has its disadvantages. First, default is a time dependent event, and so is default correlation. Let

us take the survival time of a human being as an example. The probability of dying within one year for a

person aged 50 years today is about 0.6%, but the probability of dying for the same person within 50 years is

almost a sure event. Similarly default correlation is a time dependent quantity. Let us now take the survival

times of a couple, both aged 50 years today. The correlation between the two discrete events that each dies

within one year is very small. But the correlation between the two discrete events that each dies within 100

years is 1. Second, concentration on a single period of one year wastes important information. There are

empirical studies which show that the default tendency of corporate bonds is linked to their age since issue.

Also there are strong links between the economic cycle and defaults. Arbitrarily focusing on a one year period

neglects this important information. Third, in the majority of credit derivative valuations, what we need is

not the default correlation of two entities over the next year. We may need to have a joint distribution of

survival times for the next 10 years. Fourth, the calculation of default rates as simple proportions is possible

only when no samples are censored during the one year period1.

This paper introduces a few techniques used in survival analysis. These techniques have been widely applied

to other areas, such as life contingencies in actuarial science and industry life testing in reliability studies,

which are similar to the credit problems we encounter here. We first introduce a random variable called

1A company who is observed, default free, by Moody’s for 5-years and then withdrawn from the Moody’s study must have
a survival time exceeding 5 years. Another company may enter into Moody’s study in the middle of a year, which implies that
Moody’s observes the company for only half of the one year observation period. In the survival analysis of statistics, such incomplete
observation of default time is called censoring. According to Moody’s studies, such incomplete observation does occur in Moody’s
credit default samples.
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“time-until-default” to denote the survival time of each defaultable entity or financial instrument. Then,

we define the default correlation of two entities as the correlation between their survival times. In credit

derivative valuation we need first to construct a credit curve for each credit risk. A credit curve gives all

marginal conditional default probabilities over a number of years. This curve is usually derived from the

risky bond spread curve or asset swap spreads observed currently from the market. Spread curves and asset

swap spreads contain information on default probabilities, recovery rate and liquidity factors etc. Assuming

an exogenous recovery rate and a default treatment, we can extract a credit curve from the spread curve or

asset swap spread curve. For two credit risks, we would obtain two credit curves from market observable

information. Then, we need to specify a joint distribution for the survival times such that the marginal

distributions are the credit curves. Obviously, this problem has no unique solution. Copula functions used in

multivariate statistics provide a convenient way to specify the joint distribution of survival times with given

marginal distributions. The concept of copula functions, their basic properties, and some commonly used

copula functions are introduced. Finally, we give a few numerical examples of credit derivative valuation to

demonstrate the use of copula functions and the impact of default correlation.

2 Characterization of Default by Time-Until-Default

In the study of default, interest centers on a group of individual companies for each of which there is defined

a point event, often called default, (or survival) occurring after a length of time. We introduce a random

variable called the time-until-default, or simply survival time, for a security, to denote this length of time.

This random variable is the basic building block for the valuation of cash flows subject to default.

To precisely determine time-until-default, we need: an unambiguously defined time origin, a time scale for

measuring the passage of time, and a clear definition of default.

We choose the current time as the time origin to allow use of current market information to build credit

curves. The time scale is defined in terms of years for continuous models, or number of periods for discrete

models. The meaning of default is defined by some rating agencies, such as Moody’s.
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2.1 Survival Function

Let us consider an existing securityA. This security’s time-until-default, TA, is a continuous random variable

which measures the length of time from today to the time when default occurs. For simplicity we just use T

which should be understood as the time-until-default for a specific securityA. LetF(t) denote the distribution

function of T ,

F(t) = Pr(T ≤ t), t ≥ 0 (2)

and set

S(t) = 1 − F(t) = Pr(T > t), t ≥ 0. (3)

We also assume that F(0) = 0, which implies S(0) = 1. The function S(t) is called the survival function.

It gives the probability that a security will attain age t . The distribution of TA can be defined by specifying

either the distribution function F(t) or the survival function S(t). We can also define a probability density

function as follows

f (t) = F ′(t) = −S ′(t) = lim
�→0+

Pr[t ≤ T < t +�]

�
.

To make probability statements about a security which has survived x years, the future life time for this

security is T − x|T > x. We introduce two more notations

t qx = Pr[T − x ≤ t |T > x], t ≥ 0

tpx = 1 − t qx = Pr[T − x > t |T > x], t ≥ 0. (4)

The symbol t qx can be interpreted as the conditional probability that the security A will default within the

next t years conditional on its survival for x years. In the special case of X = 0, we have

tp0 = S(t) x ≥ 0.
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If t = 1, we use the actuarial convention to omit the prefix 1 in the symbols t qx and tpx , and we have

px = Pr[T − x > 1|T > x]

qx = Pr[T − x ≤ 1|T > x].

The symbol qx is usually called the marginal default probability, which represents the probability of default

in the next year conditional on the survival until the beginning of the year. A credit curve is then simply

defined as the sequence of q0, q1, · · · , qn in discrete models.

2.2 Hazard Rate Function

The distribution function F(t) and the survival function S(t) provide two mathematically equivalent ways

of specifying the distribution of the random variable time-until-default, and there are many other equiva-

lent functions. The one used most frequently by statisticians is the hazard rate function which gives the

instantaneous default probability for a security that has attained age x.

Pr[x < T ≤ x +�x|T > x] = F(x +�x)− F(x)
1 − F(x)

≈ f (x)�x

1 − F(x) .

The function

f (x)

1 − F(x)
has a conditional probability density interpretation: it gives the value of the conditional probability density

function of T at exact age x, given survival to that time. Let’s denote it as h(x), which is usually called

the hazard rate function. The relationship of the hazard rate function with the distribution function and

survival function is as follows
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h(x) = f (x)

1 − F(x) = −S
′(x)
S(x)

. (5)

Then, the survival function can be expressed in terms of the hazard rate function,

S(t) = e−
∫ t

0 h(s)ds .

Now, we can express t qx and tpx in terms of the hazard rate function as follows

tpx = e−
∫ t

0 h(s+x)ds, (6)

t qx = 1 − e−
∫ t

0 h(s+x)ds .

In addition,

F(t) = 1 − S(t) = 1 − e−
∫ t

0 h(s)ds,

and

f (t) = S(t) · h(t). (7)

which is the density function for T .

A typical assumption is that the hazard rate is a constant, h, over certain period, such as [x, x + 1]. In this

case, the density function is

f (t) = he−ht
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which shows that the survival time follows an exponential distribution with parameter h. Under this assump-

tion, the survival probability over the time interval [x, x + t] for 0 < t ≤ 1 is

tpx = 1 − t qx = e−
∫ t

0 h(s)ds = e−ht = (px)t

where px is the probability of survival over one year period. This assumption can be used to scale down the

default probability over one year to a default probability over a time interval less than one year.

Modelling a default process is equivalent to modelling a hazard function. There are a number of reasons why

modelling the hazard rate function may be a good idea. First, it provides us information on the immediate

default risk of each entity known to be alive at exact age t . Second, the comparisons of groups of individuals

are most incisively made via the hazard rate function. Third, the hazard rate function based model can be

easily adapted to more complicated situations, such as where there is censoring or there are several types

of default or where we would like to consider stochastic default fluctuations. Fourth, there are a lot of

similarities between the hazard rate function and the short rate. Many modeling techniques for the short rate

processes can be readily borrowed to model the hazard rate.

Finally, we can define the joint survival function for two entities A and B based on their survival times TA

and TB ,

STATB (s, t) = Pr[TA > s, TB > t].

The joint distributional function is

F(s, t) = Pr[TA ≤ s, TB ≤ t]
= 1 − STA(s)− STB (t)+ STATB (s, t).

The aforementioned concepts and results can be found in survival analysis books, such as Bowers et al.

[1997], Cox and Oakes [1984].

7



3 Definition of Default Correlations

The default correlation of two entities A and B can then be defined with respect to their survival times TA

and TB as follows

ρAB = Cov(TA, TB)√
V ar(TA)V ar(TB)

= E(TATB)− E(TA)E(TB)√
V ar(TA)V ar(TB)

. (8)

Hereafter we simply call this definition of default correlation the survival time correlation. The survival

time correlation is a much more general concept than that of the discrete default correlation based on a one

period. If we have the joint distribution f (s, t) of two survival times TA, TB , we can calculate the discrete

default correlation. For example, if we define

E1 = [TA < 1],

E2 = [TB < 1],

then the discrete default correlation can be calculated using equation (1) with the following calculation

q12 = Pr[E1E2] =
∫ 1

0

∫ 1

0
f (s, t)dsdt

q1 =
∫ 1

0
fA(s)ds

q2 =
∫ 1

0
fB(t)dt.

However, knowing the discrete default correlation over one year period does not allow us to specify the

survival time correlation.

4 The Construction of the Credit Curve

The distribution of survival time or time-until-default can be characterized by the distribution function,

survival function or hazard rate function. It is shown in Section 2 that all default probabilities can be
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calculated once a characterization is given. The hazard rate function used to characterize the distribution of

survival time can also be called a credit curve due to its similarity to a yield curve. But the basic question is:

how do we obtain the credit curve or the distribution of survival time for a given credit?

There exist three methods to obtain the term structure of default rates:

(i) Obtaining historical default information from rating agencies;

(ii) Taking the Merton option theoretical approach;

(iii) Taking the implied approach using market prices of defaultable bonds or asset swap spreads.

Rating agencies like Moody’s publish historical default rate studies regularly. In addition to the commonly

cited one-year default rates, they also present multi-year default rates. From these rates we can obtain the

hazard rate function. For example, Moody’s (see Carty and Lieberman [1997]) publishes weighted average

cumulative default rates from 1 to 20 years. For the B rating, the first 5 years cumulative default rates in

percentage are 7.27, 13.87, 19.94, 25.03 and 29.45. From these rates we can obtain the marginal conditional

default probabilities. The first marginal conditional default probability in year one is simply the one-year

default probability, 7.27%. The other marginal conditional default probabilities can be obtained using the

following formula:

n+1qx = nqx + npx · qx+n, (9)

which simply states that the probability of default over time interval [0, n+ 1] is the sum of the probability

of default over the time interval [0, n], plus the probability of survival to the end of nth year and default in

the following year. Using equation (9) we have the marginal conditional default probability:

qx+n = n+1qx − nqx

1 − nqx

which results in the marginal conditional default probabilities in year 2, 3, 4, 5 as 7.12%, 7.05%, 6.36% and

5.90%. If we assume a piecewise constant hazard rate function over each year, then we can obtain the hazard

rate function using equation (6). The hazard rate function obtained is given in Figure (1).
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Using diffusion processes to describe changes in the value of the firm, Merton [1974] demonstrated that a

firm’s default could be modeled with the Black and Scholes methodology. He showed that stock could be

considered as a call option on the firm with strike price equal to the face value of a single payment debt.

Using this framework we can obtain the default probability for the firm over one period, from which we

can translate this default probability into a hazard rate function. Geske [1977] and Delianedis and Geske

[1998] extended Merton’s analysis to produce a term structure of default probabilities. Using the relationship

between the hazard rate and the default probabilities we can obtain a credit curve.

Alternatively, we can take the implicit approach by using market observable information, such as asset swap

spreads or risky corporate bond prices. This is the approach used by most credit derivative trading desks. The

extracted default probabilities reflect the market-agreed perception today about the future default tendency of

the underlying credit. Li [1998] presents one approach to building the credit curve from market information

based on the Duffie and Singleton [1996] default treatment. In that paper the author assumes that there exists

a series of bonds with maturity 1, 2, .., n years, which are issued by the same company and have the same

seniority. All of those bonds have observable market prices. From the market price of these bonds we can

calculate their yields to maturity. Using the yield to maturity of corresponding treasury bonds we obtain a

yield spread curve over treasury (or asset swap spreads for a yield spread curve over LIBOR). The credit

curve construction is based on this yield spread curve and an exogenous assumption about the recovery rate

based on the seniority and the rating of the bonds, and the industry of the corporation.

The suggested approach is contrary to the use of historical default experience information provided by rating

agencies such as Moody’s. We intend to use market information rather than historical information for the

following reasons:

• The calculation of profit and loss for a trading desk can only be based on current market information.

This current market information reflects the market agreed perception about the evolution of the market

in the future, on which the actual profit and loss depend. The default rate derived from current market

information may be much different than historical default rates.

• Rating agencies use classification variables in the hope that homogeneous risks will be obtained
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after classification. This technique has been used elsewhere like in pricing automobile insurance.

Unfortunately, classification techniques omit often some firm specific information. Constructing a

credit curve for each credit allows us to use more firm specific information.

• Rating agencies reacts much slower than the market in anticipation of future credit quality. A typical

example is the rating agencies reaction to the recent Asian crisis.

• Ratings are primarily used to calculate default frequency instead of default severity. However, much

of credit derivative value depends on both default frequency and severity.

• The information available from a rating agency is usually the one year default probability for each rating

group and the rating migration matrix. Neither the transition matrixes, nor the default probabilities

are necessarily stable over long periods of time. In addition, many credit derivative products have

maturities well beyond one year, which requires the use of long term marginal default probability.

It is shown under the Duffie and Singleton approach that a defaultable instrument can be valued as if it is a

default free instrument by discounting the defaultable cash flow at a credit risk adjusted discount factor. The

credit risk adjusted discount factor or the total discount factor is the product of risk-free discount factor and

the pure credit discount factor if the underlying factors affecting default and those affecting the interest rate

are independent. Under this framework and the assumption of a piecewise constant hazard rate function, we

can derive a credit curve or specify the distribution of the survival time.

5 Dependent Models - Copula Functions

Let us study some problems of an n credit portfolio. Using either the historical approach or the market

implicit approach, we can construct the marginal distribution of survival time for each of the credit risks in

the portfolio. If we assume mutual independence among the credit risks, we can study any problem associated

with the portfolio. However, the independence assumption of the credit risks is obviously not realistic; in

reality, the default rate for a group of credits tends to be higher in a recession and lower when the economy
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is booming. This implies that each credit is subject to the same set of macroeconomic environment, and that

there exists some form of positive dependence among the credits. To introduce a correlation structure into

the portfolio, we must determine how to specify a joint distribution of survival times, with given marginal

distributions.

Obviously, this problem has no unique solution. Generally speaking, knowing the joint distribution of

random variables allows us to derive the marginal distributions and the correlation structure among the

random variables, but not vice versa. There are many different techniques in statistics which allow us to

specify a joint distribution function with given marginal distributions and a correlation structure. Among

them, copula function is a simple and convenient approach. We give a brief introduction to the concept of

copula function in the next section.

5.1 Definition and Basic Properties of Copula Function

A copula function is a function that links or marries univariate marginals to their full multivariate distribution.

For m uniform random variables, U1, U2, · · · ,Um, the joint distribution function C, defined as

C(u1, u2, · · · , um, ρ) = Pr[U1 ≤ u1, U2 ≤ u2, · · · , Um ≤ um]

can also be called a copula function.

Copula functions can be used to link marginal distributions with a joint distribution. For given univariate

marginal distribution functions F1(x1), F2(x2),· · · , Fm(xm), the function

C(F1(x1), F2(x2), · · · , Fm(xm)) = F(x1, x2, · · · xm),

which is defined using a copula function C, results in a multivariate distribution function with univariate

marginal distributions as specified F1(x1), F2(x2),· · · , Fm(xm).

This property can be easily shown as follows:
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C(F1(x1), F2(x2), · · · , Fm(xm), ρ) = Pr [U1 ≤ F1(x1), U2 ≤ F2(x2), · · · , Um ≤ Fm(xm)]
= Pr

[
F−1

1 (U1) ≤ x1, F
−1
2 (U2) ≤ x2, · · · , F−1

m (Um) ≤ xm
]

= Pr [X1 ≤ x1, X2 ≤ x2, · · · , Xm ≤ xm]

= F(x1, x2, · · · xm).

The marginal distribution of Xi is

C(F1(+∞), F2(+∞), · · ·Fi(xi), · · · , Fm(+∞), ρ)
= Pr [X1 ≤ +∞, X2 ≤ +∞, · · · , Xi ≤ xi, Xm ≤ +∞]

= Pr[Xi ≤ xi]
= Fi(xi).

Sklar [1959] established the converse. He showed that any multivariate distribution function F can be

written in the form of a copula function. He proved the following: If F(x1, x2, · · · xm) is a joint multivariate

distribution function with univariate marginal distribution functions F1(x1), F2(x2),· · · , Fm(xm), then there

exists a copula function C(u1, u2, · · · , um) such that

F(x1, x2, · · · xm) = C(F1(x1), F2(x2), · · · , Fm(xm)).

If each Fi is continuous then C is unique. Thus, copula functions provide a unifying and flexible way to

study multivariate distributions.

For simplicity’s sake, we discuss only the properties of bivariate copula functions C(u, v, ρ) for uniform

random variables U and V , defined over the area {(u, v)|0 < u ≤ 1, 0 < v ≤ 1}, where ρ is a correlation

parameter. We call ρ simply a correlation parameter since it does not necessarily equal the usual correlation

coefficient defined by Pearson, nor Spearman’s Rho, nor Kendall’s Tau. The bivariate copula function has

the following properties:

(i) Since U and V are positive random variables, C(0, v, ρ) = C(u, 0, ρ) = 0.

13



(ii) Since U and V are bounded above by 1, the marginal distributions can be obtained by C(1, v, ρ) = v,

C(u, 1, ρ) = u.

(iii) For independent random variables U and V , C(u, v, ρ) = uv.

Frechet [1951] showed there exist upper and lower bounds for a copula function

max(0, u+ v − 1) ≤ C(u, v) ≤ min(u, v).

The multivariate extension of Frechet bounds is given by Dall’Aglio [1972].

5.2 Some Common Copula Functions

We present a few copula functions commonly used in biostatistics and actuarial science.

Frank Copula The Frank copula function is defined as

C(u, v) = 1

α
ln

[
1 + (eαu − 1)(eαv − 1)

eα − 1

]
, −∞ < α <∞.

Bivariate Normal

C(u, v) = %2(%
−1(u),%−1(v), ρ), −1 ≤ ρ ≤ 1, (10)

where%2 is the bivariate normal distribution function with correlation coefficientρ, and%−1 is the inverse of a

univariate normal distribution function. As we shall see later, this is the copula function used in CreditMetrics.

Bivariate Mixture Copula Function We can form new copula function using existing copula functions.

If the two uniform random variables u and v are independent, we have a copula function C(u, v) = uv. If

the two random variables are perfect correlated we have the copula function C(u, v) = min(u, v). Mixing

the two copula functions by a mixing coefficient (ρ > 0) we obtain a new copula function as follows
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C(u, v) = (1 − ρ)uv + ρmin(u, v), if ρ > 0.

If ρ ≤ 0 we have

C(u, v) = (1 + ρ)uv − ρ(u− 1 + v)&(u− 1 + v), if ρ ≤ 0,

where

&(x) = 1, if x ≥ 0

= 0, if x < 0.

5.3 Copula Function and Correlation Measurement

To compare different copula functions, we need to have a correlation measurement independent of marginal

distributions. The usual Pearson’s correlation coefficient, however, depends on the marginal distributions

(See Lehmann [1966]). Both Spearman’s Rho and Kendall’s Tau can be defined using a copula function only

as follows

ρs = 12
∫∫

[C(u, v)− uv]dudv,

τ = 4
∫∫

C(u, v)dC(u, v)− 1.

Comparisons between results using different copula functions should be based on either a common Spear-

man’s Rho or a Kendall’s Tau.

Further examination of copula functions can be found in a survey paper by Frees and Valdez [1988] and a

recent book by Nelsen [1999].
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5.4 The Calibration of Default Correlation in Copula Function

Having chosen a copula function, we need to compute the pairwise correlation of survival times. Using the

CreditMetrics (Gupton et al. [1997]) asset correlation approach, we can obtain the default correlation of two

discrete events over one year period. As it happens, CreditMetrics uses the normal copula function in its

default correlation formula even though it does not use the concept of copula function explicitly.

First let us summarize how CreditMetrics calculates joint default probability of two creditsA andB. Suppose

the one year default probabilities for A and B are qA and qB . CreditMetrics would use the following steps

• Obtain ZA and ZB such that

qA = Pr[Z < ZA]

qB = Pr[Z < ZB]

where Z is a standard normal random variable

• If ρ is the asset correlation, the joint default probability for credit A and B is calculated as follows,

Pr[Z < ZA,Z < ZB] =
ZA∫

−∞

ZB∫
−∞

φ2(x, y|ρ)dxdy = %2(ZA,ZB, ρ) (11)

where φ2(x, y|ρ) is the standard bivariate normal density function with a correlation coefficient ρ, and

%2 is the bivariate accumulative normal distribution function.

If we use a bivariate normal copula function with a correlation parameter γ , and denote the survival times

for A and B as TA and TB , the joint default probability can be calculated as follows

Pr[TA < 1, TB < 1] = %2(%
−1(FA(1)),%

−1(FB(1), γ ) (12)

where FA and FB are the distribution functions for the survival times TA and TB . If we notice that
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qi = Pr[Ti < 1] = Fj(1) and Zi = %−1(qi) for i = A,B,

then we see that equation (12) and equation (11) give the same joint default probability over one year period

if ρ = γ .

We can conclude that CreditMetrics uses a bivariate normal copula function with the asset correlation as the

correlation parameter in the copula function. Thus, to generate survival times of two credit risks, we use

a bivariate normal copula function with correlation parameter equal to the CreditMetrics asset correlation.

We note that this correlation parameter is not the correlation coefficient between the two survival times. The

correlation coefficient between the survival times is much smaller than the asset correlation. Conveniently,

the marginal distribution of any subset of an n dimensional normal distribution is still a normal distribution.

Using asset correlations, we can construct high dimensional normal copula functions to model the credit

portfolio of any size.

6 Numerical Illustrations

This section gives some numerical examples to illustrate many of the points discussed above. Assume that

we have two credit risks, A and B, which have flat spread curves of 300 bps and 500 bps over LIBOR. These

spreads are usually given in the market as asset swap spreads. Using these spreads and a constant recovery

assumption of 50% we build two credit curves for the two credit risks. For details, see Li [1998]. The two

credit curves are given in Figures (2) and (3). These two curves will be used in the following numerical

illustrations.

6.1 Illustration 1. Default Correlation v.s. Length of Time Period

In this example, we study the relationship between the discrete default correlation (1) and the survival time

correlation (8). The survival time correlation is a much more general concept than the discrete default
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correlation defined for two discrete default events at an arbitrary period of time, such as one year. Knowing

the former allows us to calculate the latter over any time interval in the future, but not vice versa.

Using two credit curves we can calculate all marginal default probabilities up to anytime t in the future, i.e.

t q0 = Pr[τ < t] = 1 − e−
∫ t

0 h(s)ds,

where h(s) is the instantaneous default probability given by a credit curve. If we have the marginal default

probabilities t qA0 and t q
B
0 for both A and B, we can also obtain the joint probability of default over the time

interval [0, t] by a copula function C(u, v),

Pr[TA < t, TB < t] = C(tqA0 , tqB0 ).

Of course we need to specify a correlation parameter ρ in the copula function. We emphasize that knowing

ρ would allow us to calculate the survival time correlation between TA and TB .

We can now obtain the discrete default correlation coefficient ρt between the two discrete events that A and

B default over the time interval [0, t] based on the formula (1). Intuitively, the discrete default correlation ρt

should be an increasing function of t since the two underlying credits should have a higher tendency of joint

default over longer periods. Using the bivariate normal copula function (10) and ρ = 0.1 as an example we

obtain Figure (4).

From this graph we see explicitly that the discrete default correlation over time interval [0, t] is a function

of t . For example, this default correlation coefficient goes from 0.021 to 0.038 when t goes from six months

to twelve months. The increase slows down as t becomes large.

6.2 Illustration 2. Default Correlation and Credit Swap Valuation

The second example shows the impact of default correlation on credit swap pricing. Suppose that credit A

is the credit swap seller and credit B is the underlying reference asset. If we buy a default swap of 3 years
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with a reference asset of credit B from a risk-free counterparty we should pay 500 bps since holding the

underlying asset and having a long position on the credit swap would create a riskless portfolio. But if we

buy the default swap from a risky counterparty how much we should pay depends on the credit quality of the

counterparty and the default correlation between the underlying reference asset and the counterparty.

Knowing only the discrete default correlation over one year we cannot value any credit swaps with a maturity

longer than one year. Figure (5) shows the impact of asset correlation (or implicitly default correlation) on the

credit swap premium. From the graph we see that the annualized premium decreases as the asset correlation

between the counterparty and the underlying reference asset increases. Even at zero default correlation the

credit swap has a value less than 500 bps since the counterparty is risky.

6.3 Illustration 3. Default Correlation and First-to-Default Valuation

The third example shows how to value a first-to-default contract. We assume we have a portfolio of n credits.

Let us assume that for each credit i in the portfolio we have constructed a credit curve or a hazard rate function

for its survival time Ti . The distribution function of Ti is Fi(t). Using a copula function C we also obtain

the joint distribution of the survival times as follows

F(t1, t2, · · · , tn) = C(F1(t1), F2(t2), · · · , Fn(tn)).

If we use normal copula function we have

F(t1, t2, · · · , tn) = %n(%−1(F1(t1)),%
−1(F2(t2)), · · · ,%−1(Fn(tn)))

where %n is the n dimensional normal cumulative distribution function with correlation coefficient matrix

-.

To simulate correlated survival times we introduce another series of random variables Y1, Y2, · · ·Yn, such

that

Y1 = %−1(F1(T1)), Y2 = %−1(F2(T2)), · · · , Yn = %−1(Fn(Tn)). (13)
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Then there is a one-to-one mapping between Y and T . Simulating {Ti |i = 1, 2, ..., n} is equivalent to

simulating {Yi |i = 1, 2, ..., n}. As shown in the previous section the correlation between the Y ′s is the asset

correlation of the underlying credits. Using CreditManager from RiskMetrics Group we can obtain the asset

correlation matrix -. We have the following simulation scheme

• Simulate Y1, Y2, · · ·Yn from an n-dimension normal distribution with correlation coefficient matrix-.

• Obtain T1, T2, · · · Tn using Ti = F−1
i (N(Yi)), i = 1, 2, · · · , n.

With each simulation run we generate the survival times for all the credits in the portfolio. With this

information we can value any credit derivative structure written on the portfolio. We use a simple structure

for illustration. The contract is a two-year transaction which pays one dollar if the first default occurs during

the first two years.

We assume each credit has a constant hazard rate of h = 0.1 for 0 < t < +∞. From equation (7) we

know the density function for the survival time T is he−ht . This shows that the survival time is exponentially

distributed with mean 1/h. We also assume that every pair of credits in the portfolio has a constant asset

correlation σ 2.

Suppose we have a constant interest rate r = 0.1. If all the credits in the portfolio are independent, the hazard

rate of the minimum survival time T = min(T1, T2, · · · , Tn) is easily shown to be

hT = h1 + h2 + · · · + hn = nh.

If T < 2, the present value of the contract is 1 · e−r·T . The survival time for the first-to-default has a density

function f (t) = hT · e−hT t , so the value of the contract is given by

2To have a positive definite correlation matrix, the constant correlation coefficient has to satisfy the condition σ > − 1
n−1 .

20



V =
∫ 2

0
1 · e−rtf (t)dt

=
∫ 2

0
1 · e−r thT · e−hT tdt (14)

= hT

r + hT
(
1 − e−2.0·(r+hT )) .

In the general case we use the Monte Carlo simulation approach and the normal copula function to obtain

the distribution of T . For each simulation run we have one scenario of default times t1, t2, · · · tn, from which

we have the first-to-default time simply as t = min(t1, t2, · · · tn).

Let us examine the impact of the asset correlation on the value of the first-to-default contract of 5-assets. If

σ = 0, the expected payoff function, based on equation (14), should give a value of 0.5823. Our simulation of

50,000 runs gives a value of 0.5830. If all 5 assets are perfectly correlated, then the first-to-default of 5-assets

should be the same as the first-to-default of 1-asset since any one default induces all others to default. In this

case the contract should worth 0.1648. Our simulation of 50,000 runs produces a result of 0.1638. Figure

(6) shows the relationship between the value of the contract and the constant asset correlation coefficient.

We see that the value of the contract decreases as the correlation increases. We also examine the impact of

correlation on the value of the first-to-default of 20 assets in Figure (6). As expected, the first-to-default of

5 assets has the same value of the first-to-default of 20 assets when the asset correlation approaches to 1.

7 Conclusion

This paper introduces a few standard technique used in survival analysis to study the problem of default

correlation. We first introduce a random variable called “the time-until-default” to characterize the default.

Then the default correlation between two credit risks is defined as the correlation coefficient between their

survival times. In practice we usually use market spread information to derive the distribution of survival

times. When it comes to credit portfolio studies we need to specify a joint distribution with given marginal

distributions. The problem cannot be solved uniquely. The copula function approach provides one way of
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specifying a joint distribution with known marginals. The concept of copula functions, their basic properties

and some commonly used copula functions are introduced. The calibration of the correlation parameter used

in copula functions against some popular credit models is also studied. We have shown that CreditMetrics

essentially uses the normal copula function in its default correlation formula even though CreditMetrics does

not use the concept of copula functions explicitly. Finally we show some numerical examples to illustrate the

use of copula functions in the valuation of credit derivatives, such as credit default swaps and first-to-default

contracts.
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Figure 1: Hazard Rate Function of B Grade Based on Moody’s Study (1997)
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Figure 2: Credit Curve A
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Figure 3: Credit Curve B
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Figure 4: The Discrete Default Correlation v.s. the Length of Time Interval
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Figure 5: Impact of Asset Correlation on the Value of Credit Swap
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Figure 6: The Value of First-to-Default v. s. Asset Correlation
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